On Categorical Crossed Modules

نویسنده

  • P. CARRASCO
چکیده

The well-known notion of crossed module of groups is raised in this paper to the categorical level supported by the theory of categorical groups. We construct the cokernel of a categorical crossed module and we establish the universal property of this categorical group. We also prove a suitable 2-dimensional version of the kernelcokernel lemma for a diagram of categorical crossed modules. We then study derivations with coefficients in categorical crossed modules and show the existence of a categorical crossed module given by inner derivations. This allows us to define the low-dimensional cohomology categorical groups and, finally, these invariants are connected by a six-term 2-exact sequence obtained by using the kernel-cokernel lemma.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The category of generalized crossed modules

In the definition of a crossed module $(T,G,rho)$, the actions of the group $T$ and $G$ on themselves are given by conjugation. In this paper, we consider these actions to be arbitrary and thus generalize the concept of ordinary crossed module. Therefore, we get the category ${bf GCM}$, of all generalized crossed modules and generalized crossed module morphisms between them, and investigate som...

متن کامل

Crossed squares, crossed modules over groupoids and cat$^{bf {1-2}}-$groupoids

The aim of this paper is to introduce the notion of cat$^{bf {1}}-$groupoids which are the groupoid version of cat$^{bf {1}}-$groups and to prove the categorical equivalence between crossed modules over groupoids and cat$^{bf {1}}-$groupoids. In section 4 we introduce the notions of crossed squares over groupoids and of cat$^{bf {2}}-$groupoids, and then we show their categories are equivalent....

متن کامل

Homotopies and Automorphisms of Crossed Modules of Groupoids

We give a detailed description of the structure of the actor 2-crossed module related to the automorphisms of a crossed module of groupoids. This generalises work of Brown and Gilbert for the case of crossed modules of groups, and part of this is needed for work on 2-dimensional holonomy to be developed elsewhere.

متن کامل

Freeness Conditions for 2-Crossed Modules of Commutative Algebras

In this paper we give a construction of free 2-crossed modules. By the use of a `step-by-step' method based on the work of Andr e, we will give a description of crossed algebraic models for the steps in the construction of a free simplicial resolution of an algebra. This involves the introduction of the notion of a free 2-crossed module of algebras.

متن کامل

Representations of Crossed Modules and Other Generalized Yetter-Drinfel'd Modules

The Yang-Baxter equation plays a fundamental role in various areas of mathematics. Its solutions, called braidings, are built, among others, from Yetter-Drinfeld modules over a Hopf algebra, from self-distributive structures, and from crossed modules of groups. In the present paper these three sources of solutions are unified inside the framework of Yetter-Drinfeld modules over a braided system...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006